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Self-heating of coal: The diminishing reaction rate
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Abstract

Several models for the self-heating of coal resulting from the chemisorption of oxygen are investigated. All of the models investigated include
the effect of a diminishing reaction rate. The various mathematical forms used to represent the diminishing part of the reaction are compared and
a new formulation in the form of a generic power-law model is introduced. Results from the new model are compared with those obtained using
previous models.
© 2006 Elsevier B.V. All rights reserved.
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. Introduction

The mining process exposes a large surface area and there-
ore newly mined coal immediately begins chemisorbing oxygen
nd releasing heat [1] at a much more rapid rate than in the in
itu state. This process is normally known as pre-oxidation for
he period from mining until the coal is stockpiled. If the rate
f heat generation in a coal stockpile exceeds the rate of heat
emoval from the boundaries, the temperature will rise, possibly
p to the ignition point. During this process, the rate of oxygen
hemisorption reduces with time, because the available reactive
urface diminishes. This results in a diminishing rate of reaction,
ven when the reactant oxygen is abundant. Mathematical mod-
ling of such systems presents a challenging task because of this
pecial feature. Systems with diminishing reaction rates are of
ractical importance not only for coal, but also in materials like
har, sawdust, wool, polypropylene, paper, fish meal and others
2–5].

Pre-oxidation in coal has been acknowledged for a long time
e.g. [6] and [7]), but there was no mathematical model of the
rocess until Schmidt and Elder [1] experimentally derived the

Here Oad is the concentration of adsorbed oxygen and k and α are
constants. Schmidt and Elder [1] determined a value of α = 0.2,
while later Beamish et al. [8] obtained α = 0.14 for a different
particle size and using a different (adiabatic) testing procedure.

Although several previous studies [2,3,9] successfully used
(1) for modelling a diminishing reaction, it is not really a phys-
ically based mathematical model. In fact, the rate of oxidation
is controlled by the reactive area, which in turn depends on the
current level of adsorbed oxygen in the system. Thus it is better
to represent the diminishing reaction of coal self-heating by an
equation with a right hand side expressed as a function of Oad
rather than t, i.e. to replace Eq. (1) by

dOad

dt
= F (Oad) (2)

The main purpose of the present paper is to show how to set
up an equation with the form shown in (2) that can match the
experimental data as well as Eq. (1), and to compare the results
obtained by using (2) with those derived from (1). Previously
Chen and Wake [4,5] recognized the need to modify Eq. (1), and
presented an alternative form with a right hand side depending
ollowing equation:

dOad

dt
= kt−α (1)

on Oad. However their derivation used (1) as a starting point
and consequently the Arrhenius temperature dependence of their
model may not be correct.

The present work will consider three models in detail:
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Nomenclature

A0 Arrhenius pre-exponential facto (s−1)
CO2 oxygen concentration in gas phase (kg m−3)
Cp specific heat capacity (kJ kg−1 K−1)
C0 initial oxygen concentration in gas phase

(kg m−3)
Ea activation energy (J mol−1)
k non-isothermal reaction rate, k = A0 exp(−Ea/RT)
k0 isothermal reaction rate, k0 = A0 exp(−Ea/RT0)
n reaction order
Oad concentration of adsorbed oxygen in coal

(kg kg−1)
OD representative value of Oad (kg kg−1)
O0 initial concentration of adsorbed oxygen in coal

(kg kg−1)
Q heat of reaction (Exothermicity) (J kg−1)
rO2 reaction rate for consumption of oxygen

(kg s−1 m−3)
R gas constant (J mol−1 K−1)
t time (s)
tpr prior reaction time (s)
T temperature (absolute) (K)

Greek symbols
β new empirical constant for the diminishing rate

low
δ0 modified Frank–Kamenetskii parameter (see Eq.

(40))
ε reduced ambient temperature (see Section 5)
φ porosity
γ incomplete Gamma function
λ constant (see Eq. (41))
θ reduced excess temperature (see Eq. (36))
ρ density (kg m−3)
τ time scale (s)

Subscripts
ad adsorbed
coal coal
O2 Oxygen
∞ infinite
0 initial conditions (ambient conditions)

Superscript
* non-dimensional form

(ii) A model of the type represented by Eq. (2) derived by Chen
and Wake [4,5] (CW model).

(iii) A new power-law form for the right hand side of Eq. (2)
(new model).

In addition some other versions of (2), such as the Elovich
model, will be briefly discussed.

2. Diminishing reaction rate model

There are many different forms presented in the literature for
the mathematical model of the oxidation of coal by chemisorp-
tion. Therefore, before concentrating on the diminishing aspect
of the reaction a general formulation of the conservation equa-
tions governing self-heating of coal will be presented. Then a
simplified model will be derived by neglecting changes in the
oxygen concentration in the gas phase.

The reaction of oxygen chemisorbing on coal is assumed here
to have the simple form:

C + O2
k−→oxy-coal complex + Q(→ products) (3)

In fact the details of the reaction of oxygen with coal are
complex (see [10,11] for example) and the reaction represented
by (3) and the corresponding formulae used below are approx-
imations. However past work on diminishing effects has been
based on Eq. (3) and it will be assumed again here.

2.1. Conservation of oxygen in the pores

The equation for the conservation of the mass of oxygen in
the pores is

φ
∂CO2 = −rO2 (4)
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This is a lumped parameter model that ignores variations
n space resulting from advection and diffusion. Here φ is the
orosity of coal, CO2 is the oxygen concentration (kg m−3 of
as) and rO2 is the rate of chemisorption of oxygen (kg s−1 m−3

f whole space, i.e. gas plus solid).

.2. Conservation of adsorbed oxygen

Similarly the equation for the conservation of oxygen in the
oal matrix is:

1 − φ)ρcoal
∂Oad

∂t
= rO2 (5)

ere ρcoal is the density of coal and Oad is the mass fraction of
dsorbed oxygen (kgO2

kg−1
coal).

.3. Conservation of heat

The heat balance is:

1 − φ)ρcoal Cp,coal
∂T

∂t
= QrO2 (6)

.4. Rate of reaction

The key term in Eqs. (4)–(6) is the rate rO2 . Because the
eaction takes place on the surface of the coal particles it is
ppropriate to express it [12] in the form:

O2 = (1 − φ)ρcoalODkf

(
Oad

OD

)(
CO2

C0

)n

(7)
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In (7) the density of coal ρcoal converts a reaction rate in mass
units (per kg of coal) into volume units (per m3 of coal) and then
the factor (1 − φ) converts it to total volume units (per m3 of
coal plus pore space). The term ODf (Oad/OD) is a normalized
form of the contribution of the diminishing effect to the overall
reaction. Here OD is a representative value for Oad, for example
the initial value. The normalized form is used to allow simple
non-dimensionalisation of (7) and related formulae. The term
(CO2/C0)n corresponds to the contribution to the reaction of the
changes in oxygen concentration in the pores. Here a general
nth order reaction is assumed. Again a normalized form is used
with C0 being a typical concentration (for example the initial
value).

In Eq. (7) k is the reaction rate coefficient. It is temperature
dependent according to the Arrhenius equation:

k = A0 exp

(
− Ea

RT

)
(8)

Combining (5), (7) and (8) gives:

dOad

dt
= ODf

(
Oad

OD

)(
CO2

C0

)n

A0 exp

(
− Ea

RT

)
(9)

The assumption is usually made that the oxygen is abundant
and therefore its concentration does not change significantly, i.e.
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3. Previous diminishing reaction models

3.1. Elovich equation

The kinetics of chemisorption are often represented using the
Elovich equation:

F (Oad) = ae−bOab (12)

Here a and b are empirical constants. This equation provides
a simple graphical method for curve fitting. It has been applied
extensively to chemisorption measurements from a variety of
systems [12–14]. However it sometimes fails to match the exper-
imental data [15], particularly at early times [16].

3.2. Time-dependent functions

Boddington et al. [2] recognised that the right hand side of
Eq. (1) gives an infinite rate at t = 0 and replaced it with a well-
behaved time-dependent function kg(t), with g(t) defined by:

g(t) = 1

(t + tpr)α
, tpr ≥ 0, 0 ≤ α < 1 (13)

Here tpr is the pre-oxidation time. Boddington et al. [2] gave
values for α ranging from 0.3 to 0.7. Chen and Wake [4] used
slightly smaller values (α = 0.2 and 0.23) for coal. The value
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O2 ≈ C0. In this case (4) becomes redundant and (9) can be
ritten as:

dOad

dt
= ODf

(
Oad

OD

)
A0 exp

(
− Ea

RT

)
(10)

Note that (10) has the form given in (2) with:

(Oad) = ODf

(
Oad

OD

)
A0 exp

(
− Ea

RT

)
= kODf

(
Oad

OD

)

Similarly the conservation of heat, Eq. (6), can be written as:

dT

dt
= Q

Cp,coal
F (Oad) (11)

The aim now is to solve Eqs. (10) and (11) together with
nitial conditions:

ad(0) = Oad0, T (0) = T0

It should be noted that coal will always be pre-oxidised to
ome extent but the value of Oad0 will not be known and would
e difficult to measure. Thus the initial condition Oad0 = 0 that
as been used sometimes in the past is not physically realistic.

In Section 3 below, the various forms previously proposed for
(Oad) are reviewed. In Section 4 the new power-law model is

ntroduced and compared with previous work for the isothermal
ase. The non-dimensional heat equation is discussed in Section
. Then in Sections 6–9 approximate analytical solutions for
emperature–time relationships for the new model and previous

odels are obtained. A comparison of results for the various
odels is given in Section 10.
f tpr may be small compared with the typical induction time
t) in coal stockpiles. Some authors [4,5] have assumed tpr = 0,
ccepting the singular behaviour at t = 0, and have used the sim-
ler approximate form of Eq. (1).

Schmidt and Elder [1] introduced Eq. (1) but did not include
emperature dependence in the reaction coefficient k. With
= 0.5, Eq. (1) corresponds to the formula used in the theory
f tarnishing surfaces where the depositing film grows at a rate
nversely proportional to its thickness [18].

.3. Schmal’s formulae

Schmal et al. [12] and Schmal [13] proposed two different
iminishing functions to model the influence of reduction in
oal reactivity. These models included a first-order representa-
ion of oxygen consumption along with a diminishing rate and
ere solved numerically. The two forms used to represent the
iminishing rate were:

(a) Linearly decreasing reaction rate.

F (Oad) = 1 − (Oad/s), Oad ≤ s, s = 0.01 (14)

b) Exponentially reducing reaction rate (similar to the Elovich
equation).

F (Oad) = exp(−Oad/s), s = 0.0039 (15)

As expected the inclusion of these diminishing terms slows
he increase in temperature. However, Schmal et al. [12] con-
luded that the effect is small compared to the more significant
nfluence of variations in porosity and wind velocity on the heat-
ng of coal stockpiles.
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Later Schmal [13] used (15) with different values of s to
investigate the influence of coal weathering on the maximum
temperature rise in a coal stockpile. His results showed that for
highly weathered coal (s ≤ 0.01) spontaneous combustion could
be averted.

3.4. Chen and Wake

Chen and Wake [4,5] started with Eq. (13), i.e. with the time-
dependent rate used by Boddington et al. [2], and solved an
isothermal problem to obtain t as a function of Oad in the form:

t =
[

Oad(1 − α)

k
+ t1−α

0

]1/(1−α)

(16)

In deriving (16) they assumed tpr = 0, but avoided the singu-
larity at t = 0 by applying the initial conditions at time t0 in the
form Oad(t0) = 0. They later assumed t0 = 0 and then substituted
(16) back into (13) to obtain:

F (Oad) = k

[(1 − α)Oad/k]α/1−α
(17)

It is not clear how Eq. (17), which was derived for an isother-
mal reaction, should be used for nonisothermal problems. In
particular the appearance of the coefficient k in the denominator
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Then the non-dimensional form of Eq. (9) becomes:

dO∗
ad

dt∗
= k∗f (O∗

ad) (18)

with

k∗ = A∗
0 exp

(
− Ea

RT0

1

T ∗

)

Here A∗
0 = τA0.

We now present the three main models discussed in this paper
(new model, classical model and CW model) and solve them for
the isothermal case (T = T0 or T* = 1).

4.1. New model—power-law rate

We propose a power-law diminishing term in the non-
dimensional form:

f (O∗
ad) =

(
b + O∗

ad0

b + O∗
ad

)β

(19)

This equation was derived in three stages. First from the past
experimental data and past models such as Eq. (1) it is clear that:

f (O∗
ad) ∝ (O∗

ad)−β (20)
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s an artifact of the method of derivation and may not be related
o the physical basis of the mathematical model.

Chen and Wake [4] noted that a model using (17) reaches
gnition in less time than a model based on (13) (i.e. the model
f Boddington et al. [2,3]). While the present authors agree with
hen and Wake that having time-dependence in the rate equation

s conceptually incorrect, in our opinion their derivation of (16)
nd (17) is still not sufficiently general. We offer an alternative
pproach in the next section.

Chen and Wake [5] proposed two further models for the
iminishing reaction rate:

(Oad) = [1 + b(Oad)m]−1

nd

(Oad) = exp(−b(Oad)m)

These models are quite similar to those proposed by Schmal
t al. [12] (see Eqs. (14) and (15)).

. Modified diminishing rate of reaction

In this section we will investigate several diminishing rate
odels and propose a new model. In order to compare all mod-

ls on the same basis a non-dimensional formulation will be
ntroduced. First we define non-dimensional variables as fol-
ows:

∗
ad = Oad

OD
, T ∗ = T

T0
, t∗ = t

τ

Here OD is a typical oxygen concentration, T0 is the initial
emperature and τ is a characteristic time-scale for the problem.
Secondly, to avoid singular behaviour at Oad = 0 Eq. (20)
as modified to the form:

(O∗
ad) ∝ (b + O∗

ad)−β (21)

It will be shown later that this modification is equivalent to
he addition of tpr in (13). Finally (21) was normalized to give
(O∗

ad0) = 1 and thus (19) resulted. As pointed out above the
nitial condition O∗

ad = 0 is probably not physically realistic but
evertheless it has been used in the past and therefore it was
ecided that it was essential to use a form like Eq. (21) which
emains well-behaved in the limit O∗

ad → 0.
Eq. (19) is similar to the equation derived by Chen and Wake

3,4] (see (17)) but an important difference is that the param-
ter b is now a constant. Thus the temperature dependence of
he reaction rate is included only in the Arrhenius term in the
ate coefficient k* and the diminishing term f (O∗

ad) is assumed
o be independent of temperature. The parameters b and β are
onstants that can be related to the parameters used in previous
odels [2,4,5].
For the isothermal case, substitution of (19) into (18) gives:

dO∗
ad

dt∗
= k∗

0

(
b + O∗

ad0

b + O∗
ad

)β

(22)

With the initial condition:

∗
ad(0) = O∗

ad0 (23)

This problem can be solved by separation and integration:

∗
ad + b = (O∗

ad0 + b)

[
1 + (β + 1)

(O∗
ad0 + b)

k∗
0 t∗
]1/β+1

(24)
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4.2. Classical model—time-dependent rate

In order to compare our new model with the past work of
Boddington et al. [2,3], Lacey and Wake [9] and Chen and Wake
[4,5], we will now re-work their derivation using more general
initial conditions. Using a non-dimensional and normalized ver-
sion of (13) the isothermal model is:

dO∗
ad

dt∗
= k∗

0
1

(1 + t∗/t∗pr)
α (25)

Here t∗pr = tpr/τ. This has been set up in a normalized form so
that the initial reaction rate is the same as in (22), i.e.:

dO∗
ad

dt∗
(0) = k∗

0

Eq. (25) is slightly different from the non-normalized form
used by Chen and Wake [4,5]. In terms of the present notation
their equation can be written as:

dO∗
ad

dt∗
= k̃∗

0
1

(t∗pr + t∗)α
(26)

Eqs. (26) and (25) can be made identical by choosing:

k̃∗
0 = k∗

0(t∗pr)
α

Eq. (25) is preferred here for two reasons: first it gives
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the governing Eq. (25), which becomes:

dO∗
ad

dt∗
= k∗

0

(
k∗

0 t∗pr(1 + β)

k∗
0 t∗pr(1 + β) − O∗

ad0 + O∗
ad

)β

(31)

This equation is similar to that presented by Chen and Wake
[4,5] but appears somewhat different because they made approx-
imations equivalent to t∗pr = 0 and O∗

ad0 = 0. It is possible to
reconcile the two approaches in the limiting case t∗pr → 0 by

assuming k̃∗
0 = k∗

0(t∗pr)
α remains finite. In this case Eq. (31)

becomes:

dO∗
ad

dt∗
= k̃∗

0

(
k̃∗

0(1 + β)

O∗
ad

)β

(32)

The right hand side of (32) is essentially the same as Eq. (17).
The solution of Eq. (31) is:

O∗
ad − O∗

ad0 + (1 + β)k∗
0 t∗pr = (1 + β)k∗

0 t∗pr

[
1 + t∗

t∗pr

]1/β+1

(33)

4.4. Discussion

For the isothermal case discussed above, provided that the
parameter values are set according to Eqs. (28) and (29), then
the solutions from all three models ((24), (27) and (33)) are iden-
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he standard isothermal rate of k∗
0 at t* = 0, and secondly it

pproaches the constant non-diminishing case in the limit t∗pr →
(equivalent to the limit b → ∞ in (22)). However (25) is not

ell behaved in the limit t∗pr → 0 unless the extra assumption is

ade that k̃∗
0 = k∗

0(t∗pr)
α is finite in that limit. When comparing

ur results with those of Chen and Wake [4,5] we will make this
ssumption also.

Eq. (25) can be solved by integrating, and using the initial
onditions (23):

∗
ad +

(
k∗

0 t∗pr

1 − α
− O∗

ad0

)
= k∗

0 t∗pr

1 − α

(
1 + t∗

t∗pr

)1−α

(27)

Note that Eqs. (27) and (24) can be made identical by the
ubstitutions:

− α = 1

β + 1
(28)

k∗
0 t∗pr

1 − α
− O∗

ad0

)
= b (29)

∗
pr = O∗

ad0 + b

(β + 1)k∗
0

(30)

There is no problem in using (28) to relate α and β or in using
29) to relate k∗

0 and b. Eq. (30) imposes no extra restriction on
arameter values as it can be derived from Eqs. (28) and (29).

.3. CW model

Following the approach taken by Chen and Wake [4] the
sothermal solution from (27) is now used to eliminate t* from
ical. However the key issue is how the three models behave in the
on-isothermal case. The problem with using Eq. (33) instead
f Eq. (24) for non-isothermal problems is the way in which
he temperature dependence is introduced. In (24) we regard b
s a constant parameter that is determined from fitting model
esults to experiments and does not depend on temperature. But
or the non-isothermal case a general temperature-dependent
ate coefficient k* is used in place of the constant k∗

0. In (33)
t is difficult to decide how to treat the term k∗

0 in the non-
sothermal case. Chen and Wake [5] replace k∗

0 everywhere by
he temperature-dependent coefficient k∗, which then appears
nside the diminishing term. This form of temperature depen-
ence was introduced by the particular method of derivation of
q. (33). We suggest that there is no physical reason for replacing

he constant parameter b = k∗
0 t∗pr(1 + β) − O∗

ad0 by a tempera-
ure dependent function b(T ) = k∗(T )t∗pr(1 + β) − O∗

ad0. In our
se of the non-isothermal version of Eq. (22) the parameter b
ill be treated as a temperature-independent constant. Results
btained using this approach and the approach of Chen and Wake
5] are compared below.

. Temperature equation

The main point of the present work is to investigate the
ime predicted by the various models for a sample of coal to
each rapid self-heating. Therefore the coupled oxygen and
nergy conservation Eqs. (10) and (11), must both be solved
ogether. The two equations can be combined and written in
on-dimensional form as:

dT ∗

dt∗
= σ

dO∗
ad

dt∗
(34)
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where

σ = QOD

CpT0

Then Eq. (34) can be integrated, and after using the initial
conditions, O∗

ad(0) = O∗
ad0 and T*(0) = 1, we obtain:

T ∗ − 1 = σ(O∗
ad − O∗

ad0) (35)

Following the notation used in the theory of thermal explo-
sions [17], an alternative non-dimensional temperature can be
introduced:

θ = 1

ε
(T ∗ − 1) (36)

where

ε = RT0

Ea

Combining (35) and (36) gives:

θ = ν(O∗
ad − O∗

ad0) (37)

where

ν = σ

ε

6

w

w

H

δ

a

λ

θ

In order to compare our results with those of Chen and Wake
[4,5] an alternative constant δ̃0 is also introduced:

δ̃0 = νk̃∗
0 = δ0(t∗pr)

α (43)

In general, Eq. (39) cannot be solved analytically, but for the
special case ε ≈ 0 the resulting equation below can be solved:

dθ

dt∗
= δ0

(
λ

λ + θ

)β

exp(θ) (44)

Note that typical parameter values for coal from Schmal et
al. [12] and Sujanti et al. [18] give values for ε in the range
(0.024–0.035), and therefore the approximation ε ≈ 0 is reason-
able.

6.1. Special case β = 1

In this case Eq. (44) becomes:

dθ

dt∗
= δ0λ

(
exp(θ)

λ + θ

)

This equation can be separated and integrated. Using the ini-
tial condition from (42) gives:

t∗
1

i
t

t

o
a
c

b

t

c

t

(
(

t

Note that

1

T ∗ = 1

1 + εθ
= 1 − εθ

1 + εθ
(38)

. New model—non-isothermal case

Using (37) the non-isothermal version of Eq. (22) can be
ritten as:

dθ

dt∗
= νk∗

(
b + O∗

ad0

b + O∗
ad

)β

= ν

(
b + O∗

ad0

b + O∗
ad

)β

A∗
0 exp

(
− Ea

RT0

1

T ∗

)

After some rearrangement using (37) and (38), this can be
ritten as:

dθ

dt∗
= δ0

(
λ

λ + θ

)β

exp

(
θ

1 + εθ

)
(39)

ere:

0 = νk∗
0 = νA∗

0 exp

(
−1

ε

)
(40)

nd

= ν(O∗
ad0 + b) = δ0(O∗

ad0 + b)

k∗
0

= δ0(1 + β)t∗pr (41)

Now the initial condition corresponding to T*(0) = 1 is:

(0) = 0 (42)
=
δ0λ

[(1 + λ) − exp(−θ) {1 + λ + θ}] (45)

It is not possible to invert this relationship to make it explicit
n θ, but the limiting case θ → ∞ gives the time t∗∞ at which the
emperature grows without bound:

∗
∞ = 1

δ0

(
1 + 1

λ

)
(46)

In practice the onset of spontaneous combustion would be
bvious well before θ → ∞ but the temperature rise is rapid
nd therefore the parameter t∗∞ is a reasonable one to use for
omparing all the models.

Using Eq. (41) with β = 1 gives λ = 2δ0t
∗
pr and then (46)

ecomes:

∗
∞ = 1

δ0

(
1 + 1

2δ0t∗pr

)
(47)

For β = 1 then α = 1/2, Eq. (43) gives δ̃0 = δ0
√

t∗pr and (47)
an be rewritten as:

∗
∞ =

√
t∗pr

δ̃0
+ 1

2δ̃2
0

(48)

Note that in the limit as t∗pr → ∞ the right hand side of Eq.
25) is constant, i.e. the diminishing effect is not present, and
47) reduces to:

∗
∞ = 1

δ0

However, the corresponding limit of Eq. (48) is not defined.
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Conversely in the limiting case t∗pr → 0, the limit of (47) is
not defined but (48) reduces to:

t∗∞ = 1

2δ̃2
0

This is the same as the result derived by Chen and Wake [4,5].

6.2. General β

In the general case the separation of Eq. (44) gives:

(λ + θ)β exp(−θ)dθ = δ0λ
β dt∗

This equation can be simplified by making the substitution
ϕ = θ + λ, and it can then be integrated. Using the initial condition
θ = 0 at t* = 0, gives:

t∗ = 1

δ0
λ−β exp(λ)

∫ θ+λ

λ

ϕβ exp(−ϕ) dϕ (49)

The integral in Eq. (49) can be expressed in terms of incom-
plete Gamma functions (see [19]):

t∗ = 1

δ0
λ−β exp(λ)[γ(β + 1, θ + λ) − γ(β + 1, λ)] (50)

Note for the special case β = 1 then γ(2,
x) = 1 − (1 + x)exp(−x). Substituting in (50) this gives:

t

t

γ

t

t

t

O

t

The asymptotic form of Eq. (52) for large values of λ is (see
[19]):

t∗∞ = 1

δ0

[
1 + β

λ
+ β(β − 1)

λ2 + · · ·
]

(53)

7. CW model—non-isothermal case

In order to compare our new version of the power-law model
with previous work it is necessary to re-work some of it, using the
same initial conditions throughout. In this section we investigate
the version of the power-law model used by Chen and Wake
[4,5]. Following their approach the non-isothermal version of
Eq. (31) is:

dO∗
ad

dt∗
= k∗

(
k∗t∗pr(1 + β)

k∗t∗pr(1 + β) − O∗
ad0 + O∗

ad

)β

(54)

Note that we do not consider it to be correct to include the
temperature-dependent k* (rather than the constant k∗

0) within
the diminishing part of the reaction, but nevertheless we will
solve Eq. (54) for comparative purposes.

First we use Eq. (36) to express k* in terms of θ:

k∗ = A∗
0 exp

(
− E

RT0

1

T ∗

)
= k∗

0 exp

(
θ

1 + εθ

)
(55)

7

[

m

∗ = 1

δ0λ
λ exp(λ)[−{1 + θ + λ} exp(−θ − λ)

+ {1 + λ} exp(−λ)]

With some rearrangement this equation can be shown to be
he same as (45).

For the special case (β = (1/2)):(
3

2
, x

)
= 1

2
γ

(
1

2
, x

)
− √

x exp(−x)

=
√

π

2
erf(

√
x) − √

x exp(−x)

Then Eq. (50) becomes:

∗ = 1

δ0
√

λ

[
exp(λ)

√
π

2
{erf(

√
θ + λ)

− erf(
√

λ)} − √
θ + λ exp(−θ) +

√
λ
]

(51)

When θ → ∞ Eq. (51) gives:

∗
∞ = 1

δ0
√

λ

[
exp(λ)

√
π

2
{erfc(

√
λ)} +

√
λ

]

For general β the limit θ → ∞ of Eq. (50) gives:

∗
∞ = 1

δ0
λ−β exp(λ)[Γ (β + 1) − γ(β + 1, λ)]

r

∗
∞ = 1

δ0
λ−β exp(λ)[Γ (β + 1, λ)] (52)
Then (54) becomes:

dθ

dt∗
= δ0

(
1 +

(
θ

λ

)
exp

(
− θ

1 + εθ

))−β

exp

(
θ

1 + εθ

)
(56)

For the special case ε ≈ 0 this simplifies to:

dθ

dt∗
= δ0

(
λ

λ + θ exp(−θ)

)β

exp(θ) (57)

.1. Special case β = 1

In this case (57) becomes:

dθ

dt∗
= δ0λ

(
exp(2θ)

λ exp(θ) + θ

)
(58)

In the alternative notation (58) can be written as:

dθ

dt∗
= 2δ̃2

0

(
exp(2θ)

2δ̃0
√

t∗pr exp(θ) + θ

)
(59)

In the limit t∗pr → 0 Eq. (59) reduces to:

dθ

dt∗
= 2δ̃2

0

(
exp(2θ)

θ

)
(60)

Eq. (60) is the same as the equation solved by Chen and Wake
4,5].

However the approximation t∗pr → 0 is not necessary as the
ore general version, (58), can be separated and integrated.
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After applying the initial conditions θ = 0 at t* = 0 we obtain:

t∗ = 1

4δ0λ
[(1 + 4λ) − 4λ exp(−θ) − (1 + 2θ) exp(−2θ)]

(61)

In the limit θ → ∞ Eq. (61) gives:

t∗∞ = 1

δ0

(
1 + 1

4λ

)
(62)

For the case β = 1 or λ = 2δ0t
∗
pr then (62) becomes:

t∗∞ = 1

δ0

(
1 + 1

8δ0t∗pr

)
(63)

Eq. (63) can be rewritten as:

t∗∞ =
√

t∗pr

δ̃0
+ 1

8δ̃2
0

(64)

In the limit as t∗pr → ∞, i.e. when the diminishing effect is
not present, (63) reduces to the correct limit:

t∗∞ = 1

δ0

However, the corresponding limit of Eq. (64) is not defined.
C ∗
t

t

t

g

8

d
i

8

t

Using δ̃0 = δ0
√

t∗pr, (68) can be rewritten as:

t∗ = 1

4δ̃2
0

[{1 − exp(−θ)}2 + 4δ̃0

√
t∗pr{1 − exp(−θ)}] (69)

Note that in the limit t∗pr → 0 Eq. (69) becomes:

t∗ = 1

4δ̃2
0

[1 − exp(−θ)]2 (70)

This is the same as the equation given by Chen and Wake [5].
The limit θ → ∞ in Eq. (68) gives:

t∗∞ = 1

δ0

(
1 + 1

4δ0t∗pr

)
(71)

The Chen and Wake [5] version of Eq. (71), obtained from
the limit θ → ∞ in Eq. (70), is:

t∗∞ = 1

4δ̃2
0

8.2. General β

Now the integration of Eq. (67), together with the initial con-
dition from (42) gives:

t

⎡ { }1/1−α
⎤

t

t

9

e
c
n
w

f

t

t

t

onversely in the limiting case tpr → 0, then Eq. (61) reduces
o the form used by Chen and Wake [4,5], namely:

∗ = 1

8δ̃2
0

[1 − (1 + 2θ) exp(−2θ)] (65)

In the limit θ → ∞ Eq. (65) gives:

∗
∞ = 1

8δ̃2
0

This is the same as the limit of Eq. (64) as t∗pr → 0.
Unfortunately Eq. (57) cannot be solved in closed form for

eneral β.

. Classical model—non-isothermal case

In this section the classical model with the time-dependent
iminishing rate is re-worked. Using (36) and (40) the non-
sothermal version of Eq. (25) can be written as:

dθ

dt∗
= δ0

1

(1 + t∗/t∗pr)
α exp

(
θ

1 + εθ

)
(66)

For the special case ε ≈ 0, (66) becomes:

dθ

dt∗
= δ0

1

(1 + t∗/t∗pr)
α exp(θ) (67)

.1. Special case β = 1, α = 1/2

For this case Eq. (67) can be separated and integrated:

∗ = 1

4δ2
0t

∗
pr

[{1 − exp(−θ)}2 + 4δ0t
∗
pr{1 − exp(−θ)}] (68)
∗ = t∗pr
⎣−1 + 1 + 1 − α

δ0t∗pr
(1 − exp(−θ)) ⎦ (72)

In the limit θ → ∞ Eq. (72) gives:

∗
∞ = 1

δ0

λ

(1 + β)

[
−1 +

{
1 + 1

λ

}β+1
]

(73)

The asymptotic form of (73) for large values of λ is:

∗
∞ = 1

δ0

[
1 + β

2λ
+ β(β − 1)

6λ2 + · · ·
]

(74)

. Elovich model

For comparative purposes the Elovich model is also consid-
red here. The corresponding equation can also be solved in
losed form using the same approximations as used above. The
ormalized form of the Elovich equation (see Eq. (12)) can be
ritten in non-dimensional form as follows:

(O∗
ad) = exp(−b∗(O∗

ad − O∗
ad0))

Then the corresponding equation for the non-dimensional
emperature θ is:

dθ

dt∗
= δ0 exp(−ηθ) exp

(
θ

1 + εθ

)
(75)

Here η = b*/ν. As above the approximation ε ≈ 0 is made, so
hat Eq. (75) can be solved in the form:

∗ = 1

δ0(1 − η)
[1 − exp(−[1 − η]θ)] (76)
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Table 1
Comparison between models

Model name t∗∞ t∗∞ (Alternative notation) t∗∞ (Alternative notation, t∗pr → 0)

Constant reaction rate 1
δ0

√
t∗pr

δ̃0
Not applicable

New model power-law rate 1
δ0

(
1 + 1

2δ0 t∗pr

) √
t∗pr

δ̃0
+ 1

2δ̃2
0

1
2δ̃2

0

CW model power-law rate 1
δ0

(
1 + 1

8δ0 t∗pr

) √
t∗pr

δ̃0
+ 1

8δ̃2
0

1
8δ̃2

0

Classical model time-dependent rate 1
δ0

(
1 + 1

4δ0 t∗pr

) √
t∗pr

δ̃0
+ 1

4δ̃2
0

1
4δ̃2

0

Elovich [15,16] 1
δ0(1−η)

√
t∗pr

δ̃0(1−η)
Not applicable

Special case β = 1. Note that δ̃0 = δ0
√

t∗pr.

In the limit θ → ∞ Eq. (76) gives:

t∗∞ = 1

δ0(1 − η)

10. Comparison of results and conclusions

The key parameter to consider is the time t∗∞ at which self-
ignition occurs, given by the limit θ → ∞. The results for the
special case β = 1 are shown in Table 1, with the solution for the
constant reaction rate included as the baseline. The results show
that our power-law model predicts a longer time to ignition than

F
c

either the classical model with a time-dependent right hand side
or the power-law model introduced by Chen and Wake [4]. This
conclusion is confirmed by the plots of time versus temperature
in Fig. 1.

The results shown are for the special case β = 1 but the asymp-
totic formulae (see Eqs. (53) and (74) and Table 2) for general
β show that the relative order of times to reach ignition for the
models does not depend on β. If the value of λ (defined in Eq.
(41)) is increased then the curves in Fig. 1 move closer together
and conversely if λ is decreased they spread further apart. This
effect is shown for the power-law model in Fig. 2.

F
p

T
C

M

C

N

C

G

ig. 1. Plots of normalized time (t*δ0) vs. dimensionless temperature (θ) for the
ase β = 1 and λ = 1.

able 2
omparison between models

odel name β α

onstant reaction rate

ew model power-law rate 1 1/2

1/2 1/3
β
β

1+β

lassical model—time-dependent rate β
β

1+β

eneral β. Note that λ = δ0(1 + β)t∗pr.
ig. 2. Plots of normalized time (t*δ0) vs. dimensionless temperature (θ) for the
ower law model. β = 1 and various λ values.

t∗∞δ0

1

1 + 1
λ

1 +
√

π

2
√

λ
exp(λ) erfc(

√
λ)

λ−βexp(λ)
[
Γ (β + 1) − γ(β + 1, λ)

]
≈ 1 + β/λ + β(β − 1)/λ2 + · · ·
λ
(β+1)

[
−1 +

{
1 + 1

λ

}β+1
]

≈ 1 + β/2λ + β(β − 1)/6λ2 + · · ·
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From the comparison of the results given in Tables 1 and 2
it is not possible to gain support for preferring one model rather
than the others. All the models behave reasonably and there
is sufficient uncertainty in parameter values so that a compari-
son with experimental results is unlikely to help. However we
claim that our new power-law model is more physically based
and should be preferred. Unfortunately experimental data are
not available that would allow a comparison of the model pro-
posed here with other simple lumped parameter models such
as the Elovich model, or with more complex three-dimensional
models.
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